课程时长:3天
Chap1: Python Basis and advanced Functions
1.1 Anaconda and Pycharm setup and path set
1) Anaconda+python3.6
2) Pycharm
3) Training
1.2 type, variable, string, format
1) Print
2) type
3) Variable, constant,
4) ord(), chr(), str
5) Format
6) Training
1.3 list and tuple
1) List
2) Tuple
3) Training
1.4 if, while, for
1) If <condition1>
2) for
3) while
4) Training
1.5 dict and set
1) In
2) get(), set()
3) pop(), add, remove
4) Training
1.6 File I/O operator
1) open
2) read
3) write
4) seek()
5) Training
1.7 OOP
1) Inheritance
2) Polymorphism
3) Static classes
4) Static functions
5) Decorators
6) Training: test1.7.py
1.8 Python advanced function
1) Inner function
MathematicsSetLogical judgementReflectIO operationpass, def, return
2) Generator
3) Iterable, Iterator
4) decorate, high-order function, function nest
5) JSON and PICKLE
6) Training
Chap2 Python advanced: the use of libraries
2.1 Standard library
1. Itertools
Training
2. Functools:Partial, wraps, total_ordering, cmp_to_key
Training
3. Re
Training
4. Subprocess: call, check_call, check_output, Popen+PIPE
Training
5. Pdb、traceback
Training
6. Pprint
Training
7. Logging
Training
8. Threading and multiprocessing
Training
9. Urllib/urllib2/httplib
Training
10. Os/sys
Training
11. Queue
Training
12. Pickle/cPickles
Training
13. Hashlib md5,sha
Training
14. Cvs
Training
15. Timeit
Training
2.2 Third libraries
1. numpy, scipy
Training
2. PIL
3. lxml
4. Pandas
5. matplotlib
6. scrapy: crawler
7. Machine Learning Libraries
8. Natural Language Processing Libraries
Chap3 Python advanced application (Pandas, Matplotlib, Scrapy)
3.1 Data Analysis with Pandas
3.1.1 Data Cleaning:
Training
3.1.2 Using vectorized data in pandas
Training
3.1.3 Data Wrangling
Training
3.1.4 Aggregate Operations
Training
3.1.5 Analyzing time series
Training
3.2 Data Visualization
3.2.1 Plotting diagrams with matplotlib
Training
3.2.2 Using matplotlib from within pandas
Training
3.2.3 Creating quality diagrams
Training
3.2.4 Visualizing data in Jupyter notebooks
Training
3.2.5 Other visualization libraries in Python--- PIL
Training
3.3 Python for the web
3.3.1 Packages for web processing
Training
3.3.2 Web Crawling
Training
3.3.3 Parsing HTML and XML
Training: test3.3.3.py
3.3.4 Filling web forms automatically
Training: test3.3.4.py
3.3.5 Integrative Case Training
1) Taobao.py
2) Douban.py
3) Jiepai.py
4) Maoyan.py
3.4 Python for maintenance scripting
3.4.1 Raising and catching exceptions correctly
3.4.2 Organizing code into modules and packages
3.4.3 Understanding symbol tables and accessing them in code
3.4.4 Picking a testing framework and applying TDD in Python
Chap4 Python with Machine Learning and NLP
4.1 Python with Machine Learning:
4.1.1 regression:SGD, SVR Ensemble, Ridge, SVR
4.1.2 Classification:SGD, Kernel Approximation, KNeighbors, LinearSVC, SVM, Naïve Bayes, Decision Tree, Random Forest
4.1.3 Clustering:KMeans, Spectral Clustering , GMM, MeanSHift VBGMM, MiniBatch Kmeans, SOM
4.1.4 Dimension Reduction:PCA, LDA, LLE, Isomap, Spectral Embedding
4.1.5 Series Data Mining:HMM, GMM, DTW, DNN, TDNN
4.2 Python with NLP:
4.2.1 Word Segmentation
4.2.2 Part of Speech tagging: POS
4.2.3 Word Vectorization: Word2vec
4.2.4 Semantic Similarity
4.2.5 CRF++